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Abstract The aim of the paper is to investigate the global dynamics of mathemati-
cal models for a continuous flow bioreactor and a membrane reactor. It assumes that
the models include terms representing death of the microorganism and maintenance
energy, respectively. By carrying out a qualitative analysis of the models, we give the
classification of the equilibria and show that an unstable limit cycle can exist when
the non-washout equilibrium is a focus.
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1 Introduction

Industrial effluent and household sewage are complex mixtures of many substrates and
microorganisms. The purpose of wastewater treatment is to remove pollutants what
can harm the aquatic environment. Although continuous flow reactors have commonly
been used in the treatment of industrial wastewater, membrane reactors are especially
designed for domestic wastewater treatment [10]. Let S(t) be the concentration of
substrate within the bioreactor, X (t) be the concentration of microorganism at time
t, respectively. Monod developed a simply mathematical model [9], rewriting which
into the dimensionless form it is given as follows.

d S
dt = S0−S

τ
− Xg(S)

d X
dt = − X

τ
+ Xg(S)

(1.1)
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where the Monod growth rate is given by

g(S) = S

1 + S
(1.2)

It is now also known as the “chemostat model”, which along with the extended models
has been intensively studied, to name but a few [1–6,8–17,21]. Fan and Wolkowicz [1],
Ruan [14], Wolkowicz and Xia [17] and Yuan and Zhang [20] investigated models with
time delay; Huang et al. [2–4,21] investigated a model with quadratic yield and toxin;
Imhofa and Walcherb [5] investigated a stochastic model and Nelson et al. [10–12]
investigated models with different kinetics. By Monod’s study, the nontrivial steady-
state of model (1.1) can only exist when the residence time, τ is sufficiently large.
Using phase-plane approach [6], Koga and Humphrey investigated the global dynam-
ics of model (1.1) and they found the sustained oscillation could not happen. When
τ is not large, model matches well with the experimental data. However, there is a
noticeable discrepancy when τ is very large [10]. To overcome this, a extra term, −kd X
was introduced to the model, which had been studied by McCarty [8]. However, the
stability of the non-washout equilibrium has not been studied. Later on, another term
of −ms X was introduced to the model, which is used to represent the maintenance
energy when τ is large. A different type of growth model, which is now known as
the Tessier growth model was used by Tessier when he investigated a model with
maintenance [16]. Pirt [13] investigated the case of Monod growth model, and Koga
and Humphrey [6] studied the case of ms > 0 and kd = 0. A similar mathematical
model can also developed for the recycle reactor. According to the openly published
literature, no results on the stability analysis of a mathematical model including either
death of microorganisms or maintenance for flow and recycle reactors has been pub-
lished before the work of Nelson et al. [10]. In this work, they considered the model
governed by

V d S
dt = F(S0 − S) − μ(S)

α
V X − V ms X,

V d S
dt = βF(X0 − X) + γ RF(C − 1)X + V Xμ(S) − V kd X

(1.3)

where the growth rate, g(S) and the residence time are given respectively by

g(S) = μm S

Ks + S
,

τ = V

F

where, for specific process, Ks, kd , ms, α and μmax are fixed, S0, X0 and τ are param-
eters which can be varied and β and γ are parameters defined the reactor model with
β = γ = 1 gives a continuous flow reactor and β = γ = 0 gives an idealised mem-
brane reactor in which all the microorganisms are constrained to remain in the reactor
vessel.
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However, in that paper, the global dynamics of model (1.3) has not been investi-
gated, such as the existence, non-existence of limit cycle, the uniqueness if it exists.
Our intention here is to give a globally qualitative analysis for model (1.3) from the
mathematical point of view. The rest of the paper is organised as follows. In Sect. 2, we
shall convert the model interested into a dimensionless version and specify the case
we study. In the first part of Sect. 3, by using the results from [10] or direct analysis,
we give the classification of the washout equilibrium, E1; and then give the condition
of existing a non-washout equilibrium, E2 and its type. In the second part of Sect. 3,
we discuss when the limit cycle can not exist and when we can have a limit cycle; if
it exists, the uniqueness and stability of it shall also be proven. We then conclude the
paper in Sect. 4.

2 Mathematical model

By using the transformations introduced in [10], the above dimensional model (1.3)
can be converted into the following dimensionless form, for more details we refer
readers to reference [10]. For notation simplicity, we still use the original symbols in
the new model.

d S
dt = 1

τ
(S0 − S) − SX

1+S − ms X,

d X
dt = β 1

τ
(X0 − X) + γ R

τ
X + SX

1+S − kd X
(2.1)

If assume that X0 = 0, namely there is no microorganism in the influent, then from
the analysis of [10], the dynamics of a reactor model with idealised recycle is equiva-
lent to the idealised membrane reactor, and that of a reactor model with non-idealised
recycle is equivalent to a non-idealised membrane reactor model. In other word, the
case of β = γ = R = 1 is equivalent to the case of β = γ = 0 and the case of
0 < β < 1, γ = 0 is equivalent to that of β = γ = 1, 1 > R > 0. Therefore, in this
study we focus on the investigation of a flow reactor with recycle

β = γ = 1, 0 ≤ R ≤ 1

and X0 = 0, S0 �= 0, and where R = 0, 0 < R < 1 and R = 1 correspond models
of a flow reactor without recycle, a flow reactor with non-idealized recycle and a flow
reactor with idealized recycle, respectively.

3 Mathematical analysis

3.1 Qualitative analysis of the equilibria

It is easy to see that system (2.1) always has a washout equilibrium E1(S0, 0) for all
three cases. In what follows, we shall investigate the type and stability of E1 for each
of these cases separately. Notice the Jacobian of model (2.1) at E1 is given by
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s ' = (s0 - s)/tau - s x/(1 + s) - ms x     
x ' = - x/tau + r x/tau + s x/(1 + s) - kd x

ms = 0.5
kd = 0.4

tau = 2
r = 0.9

s0 = 1
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Fig. 1 Equilibria

J (S0, 0) =
∣
∣
∣
∣
∣

− 1
τ

− S0
1+S0

− ms

0 − 1
τ

+ R
τ

+ S0
1+S0

− kd

∣
∣
∣
∣
∣

(3.1)

from which we have the eigenvalues

λ1 = − 1

τ
(3.2)

λ2 = − 1

τ
+ R

τ
+ S0

1 + S0
− kd (3.3)

By straightforward analysis or using results from [10], we can easily conclude the
following Theorem 3.1.

Theorem 3.1 For the washout equilibrium point, E1 of system (2.1) with β = γ = 1,

we have

(1) for the case of a flow reactor without recycle (or with non-idealised recycle),
namely R = 0(or 0 < R < 1), it is a stable node when kd ≥ S0

1+S0
or kd < S0

1+S0

and τ <
(1−R)(1+S0)
S0−(1+S0)kd

; otherwise it is a saddle point;
(2) for the case of a flow reactor with idealised recycle, namely R = 1, it is a stable

node when kd ≥ S0
1+S0

, while it is a saddle point when kd < S0
1+S0

.

Please see Fig. 1, which is the case of E1 to be a saddle point.

As system (2.1) has at most two equilibria: the washout equilibrium, E1 and a non-
washout equilibrium, E2(S∗, X∗) where

S∗ = 1 − R + kdτ

R − 1 + (1 − kd)τ
, X∗ = S0 − S∗

1 − R + (kd + ms)τ
(3.4)

To have E2 physically meaningful, namely both S∗ and X∗ should be positive, one of
the following conditions should be satisfied.

(i) kd < S0
1+S0

and τ ≥ (1−R)(1+S0)
S0−(1+S0)kd

for 0 ≤ R < 1;
(ii) kd < S0

1+S0
for R = 1.
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Then from Theorem 3.1, when E2 is a positive equilibrium the washout equilibrium
E1 is a saddle point.

Theorem 3.2 When having physical meaning, E2 is always stable; furthermore if
−2 < δ it is a focus and if δ ≤ −2 it is a node, where δ is defined by equation (3.10).

Proof First the stability of E2 can be obtained directly from reference [10] or straight-
forward analysis. Next we shall prove when it is a focus and when it is a node. To this
end, let’s rewrite model (2.1) as

d S
dt = 1

τ
(S0 − S)(1 + S) − SX − ms X (1 + S) ≡ P2,

d X
dt = − 1

τ
X (1 + S) + R

τ
X (1 + S) + SX − kd X (1 + S) ≡ Q2

(3.5)

From the theory of quadratic curves, there is a real number, λ such that

λP2 + Q2 = R1 R2

where Ri is a real polynomial in S and X with degree of which is not higher than 1.
It is easy to see that λ = 0 is a smart choice and then we have

R1 = X, R2 = R − 1

τ
− kd +

(
R − 1

τ
− kd + 1

)

S

Introduce transformation

S̄ = R2 and X̄ = X (3.6)

and then model (3.5) becomes

d S̄
dt = R−1+(1−kd )τ

τ

[
S̄+1

R−1+(1−kd )τ

(

S0 + 1 − τ(S̄+1)
R−1+(1−kd )τ

)

+
(

1 − τ(S̄+1)
R−1+(1−kd )τ

)

X̄ − ms X̄ τ(S̄+1)
R−1+(1−kd )τ

]

,

d X̄
dt = X̄ S̄

(3.7)

Notice that the determinant of the transformation (3.6)

∣
∣
∣
∣

∂ R2
∂S

∂ R2
∂ X

∂ X
∂S

∂ X
∂ X

∣
∣
∣
∣
= R − 1 + (1 − kd)τ

τ
> 0 (3.8)

which implies that system (3.5) is topologically equivalent to (3.7). Now shift the
non-washout equilibrium, E2 to the origin and introduce the second transformation

s = 1

μ
S̄, x = 1

ν
X̄ , t ′ = 1

λ
t,
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with

λ =
√

τ

S0 − S∗

μ = 1

λ

ν = S0 − S∗

1 − R + (kd + ms)τ

After dropping off the prime, ′ of t ′ we end up with

ds
dt = −x + δs + ls2 + msx

dx
dt = s(1 + x)

(3.9)

which is a quadratic system of class (I I I ) with n = a = 0 and b = 1 (see [18] for
more details on the classification of quadratic systems) and here

δ = −
√

τ

S0 − S∗
(R − 1 + (1 − kd)τ )

τ

×
[

S0 − S∗

1 − R + (kd + ms)τ
+ τ

(R − 1 + (1 − kd)τ )2

]

, (3.10)

l = − 1

R − 1 + (1 − kd)τ
, (3.11)

m = −(1 + ms)

√
τ

S0 − S∗
S0 − S∗

1 − R + (kd + ms)τ
(3.12)

Notice that δ < 0 when E2 exists. We know the determinant of the Jacobian at the
origin of system (3.9) has two negative real roots when δ ≤ −2, otherwise, it has
a pair of complex roots with negative real parts, which implies the conclusion. The
proof is completed. �	

3.2 Uniqueness of limit cycle

From previous section, it is easy to see if system (2.1) has a limit cycle, it must sur-
round E2 only as E1 is a saddle point. Notice the fact that there is no term of x2 in
the first equation of system (3.9). By Theorem 15.3 of reference [18], we have the
following lemma.

Lemma 3.1 If system (3.9) has a limit cycle surrounding the origin, then it must be
unique.

We can also prove the following theorem.

Lemma 3.2 When δ ≤ m system (3.9) has no limit cycle surrounding the origin.
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Proof From the second equation of system (3.9), we know that if the limit cycle sur-
rounding the origin exists, then it must locate in the half-plane, x > −1. Therefore
we do a transformation, s = y(1 + x)l , x = x, which leads to a new system

dy

dx
= −x + (mx + δ)(1 + x)l y

(1 + x)2l+1 y
(3.13)

It is equivalent to, if we let ȳ = −y + ∫ x
0 (mx + δ)(1 + x)−l−1dx and drop off the

overhead bar for the sake of notation simplicity,

dy
dt = x(1 + x)−2l−1 ≡ g(x)

dx
dt = −y +

x∫

0
(mx + δ)(1 + x)−l−1dx ≡ −y − F(x)

(3.14)

As mδl < 0, we need to compute the divergence of (3.14), which is given by

div(3.14) = (mx + δ)(1 + x)−l−1 (3.15)

Notice that the limit cycle can not touch the line 1 + x as x > −1. It must intersect
with mx + δ = 0 if the limit cycle exists, which implies a limit cycle can exist only if
δ > m. Then we complete the proof. �	
The following theorem can be derived directly from Lemma 3.2.

Theorem 3.3 When

S0 ≤ 1 − R + (1 + kd)τ

R − 1 + (1 − kd)τ

system (2.1) with β = γ = 1 and X0 = 0 or system (3.5) has no limit cycle surround-
ing the non-washout equilibrium, E2.

In what follows we shall investigate the existence of the limit cycle. By Lemma 3.2
we only need to focus on the parameter region where δ > m. Consider system (3.9),
We have

Lemma 3.3 When δ > max{m,−2} system (3.9) has an unique unstable limit cycle.

Proof First from Theorem 3.2 and Lemma 3.2 we know that if the limit cycle exists,
δ > max{m,−2}. Secondly, by using Theorem 16.8 of [19] or the results of Han [7],
we can easily prove that the solution of system (3.9) is unbounded and the number of
unbounded trajectories is greater than 2. Then, from Theorem 3.2 and its proof, the
origin of (3.9) is stable. Therefore according to the Poincaré-Bendixson theorem we
can conclude that there is a unstable limit cycle for system (3.9). At last we can see
the limit cycle must be unique from Lemma 3.1. This completes the proof. �	
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s ' = - x + d s + l s2 + m s x
x ' = s (1 + x)                

l = - 0.0033
m = - 0.1139

d = - 0.0943
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Fig. 2 Unstable limit cycle

4 Conclusion

In this paper, we carried out the qualitative analysis of models for a continuous bio-
reactor and a membrane reactor. The conditions for the existence, non-existence and
uniqueness have been given. As the non-washout equilibrium is always stable and
the system is unbounded, an unstable limit cycle can exist under certain condition. A
numerical simulation has also been carried out, which supports our theoretical analysis,
please see Fig. 2 for instance.
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